Maschinelles Lernen - Grundverfahren
- Type: Vorlesung + Übung
- Semester: WS 20/21
-
Time:
06.11.2020
14:00 - 17:30 wöchentlich
13.11.2020
14:00 - 17:30 wöchentlich
20.11.2020
14:00 - 17:30 wöchentlich
27.11.2020
14:00 - 17:30 wöchentlich
04.12.2020
15:45 - 19:00 einmalig
11.12.2020
14:00 - 17:30 wöchentlich
18.12.2020
14:00 - 17:30 wöchentlich
08.01.2021
14:00 - 17:30 wöchentlich
15.01.2021
14:00 - 17:30 wöchentlich
22.01.2021
14:00 - 17:30 wöchentlich
29.01.2021
14:00 - 17:30 wöchentlich
05.02.2021
14:00 - 17:30 wöchentlich
12.02.2021
14:00 - 17:30 wöchentlich
19.02.2021
14:00 - 17:30 wöchentlich
-
Lecturer:
Mevlüt Onur Celik
Prof. Dr. Gerhard Neumann
Philipp Becker - SWS: SWS: 3 / ECTS: 5
- Lv-No.: 2400129
- Information: Online
Bemerkungen | Das Forschungsgebiet Maschinelles Lernen hat in den letzten Jahren enorme Fortschritte gemacht und gute Kenntnisse im Maschinellen Lernen werden auch am Arbeitsmarkt immer gefragter. Maschinelles Lernen beschreibt den Wissenserwerb eines künstlichen Systems aufgrund von Erfahrung oder Daten. Regeln oder bestimmte Berechnungen müssen also nicht mehr händisch codiert werden sondern können von intelligenten Systemen aus Daten extrahiert werden.
Diese Vorlesung bietet einen Überblick über essentielle Methoden des Maschinellen Lernens. Nach einer Wiederholung der notwendigen mathematischen Grundkenntnisse beschäftigt sich die Vorlesung hauptsächlich mit Algorithmen für Klassifikation, Regression und Dichteschätzung. Beispielhafte Auflistung der Themen: - Basics in Linear Algebra, Probability Theory, Optimization and Constraint Optimization - Linear Regression - Linear Classification - Model Selection, Overfitting, and Regularization - Support Vector Machines - Kernel Methods - Bayesian Learning and Gaussian Processes - Neural Networks - Dimensionality Reduction - Density estimation - Clustering - Expectation Maximization - Graphical Models Vorlesung mit 2SWS plus 1SWS Übung plus Nachbereitung, 150h ca 30h Vorlesungsbesuch ca 15h Übungsbesuch ca 75h Nachbearbeitung und Bearbeitung der Übungsblätter ca 30h Prüfungsvorbereitung
Durch die erfolgreiche Teilnahme am Übungsbetrieb als Erfolgskontrolle anderer Art (§4(2), 3 SPO 2008) bzw. Studienleistung (§4(3) SPO 2015) kann ein Bonus erworben werden. Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekannt gegeben. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Der Bonus gilt nur für die Haupt- und Nachklausur des Semesters, in dem er erworben wurde. Danach verfällt der Notenbonus. Empfehlungen - Python Kenntnisse sind empfehlenswert - Mathematik-lastige Vorlesung. Es werden zwar die Grundlagen wiederholt, aber eine mathematische Geschicklichkeit ist hilfreich. |
Vortragssprache | Englisch |