
KIT — The Research University in the Helmholtz Association www.kit.edu

Improving the Rollout Stability of

Graph-Network-based Simulators

Bachelor’s Thesis
of

M. Rodi Düger

KIT Department of Informatics
Institute for Anthropomatics and Robotics (IAR)

Autonomous Learning Robots (ALR)

Referee: Prof. Dr. Techn. Gerhard Neumann

Advisor: M.Sc. Philipp Dahlinger

Duration: December 1st, 2023 — April 1st, 2024

Autonomous Learning Robots Lab

Erklärung

Ich versichere hiermit, dass ich die Arbeit selbstständig verfasst habe, keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt habe, die wörtlich oder inhaltlich
übernommenen Stellen als solche kenntlich gemacht habe und die Satzung des Karls-
ruher Instituts für Technologie zur Sicherung guter wissenschaftlicher Praxis beachtet
habe.

Karlsruhe, den 1. April 2024

M. Rodi Düger

iii

Zusammenfassung

Die Simulation physikalischer Phänomene ist für viele wissenschaftliche und technische
Disziplinen von entscheidender Bedeutung. Herkömmliche Simulatoren stoßen oft auf
rechnerische Herausforderungen, die Kompromisse zwischen der Geschwindigkeit der
Simulation, der Genauigkeit und der Komplexität der modellierten physikalischen
Systeme erfordern. Neueste Fortschritte im Bereich des maschinellen Lernens und des
Deep Learnings haben den Weg für den Einsatz neuronaler Netze im Kontext von Sim-
ulationen geebnet. Diese neuronalen Simulatoren können die Dynamik physikalischer
Systeme direkt aus Daten lernen. Sie sind typischerweise darauf trainiert, den nächsten
Zustand des Systems aus seinem aktuellen Zustand vorherzusagen. Allerdings stoßen
neuronale Simulatoren auf Probleme, wenn sie autoregressiv im Laufe der Inferenz
verwendet werden. Dies liegt daran, dass sie sich auf ihre eigenen Vorhersagen als
Eingaben verlassen, was zu Fehlerakkumulation und Verschiebungen in der Verteilung
führt. Dies wiederum beeinträchtigt ihre Genauigkeit und Stabilität über längere
Rollouts. In dieser Arbeit bewerten wir bestehende Ansätze zur Adressierung von
Fehlerakkumulation und Verteilungsverschiebungen in der Inferenz. Zusätzlich stellen
wir ein neues Framework vor, das einen Puffer in das Training integriert und sich
von Replay-Buffern im Reinforcement-Learning inspirieren lässt. Der vorgeschlagene
Ansatz gibt Forschern mehr Kontrolle über den Trainingsprozess und erreicht eine
vergleichbare Genauigkeit bei Langzeit-Rollouts mit bestehenden Methoden.

v

Abstract

Simulating physical phenomena is essential for many disciplines in science and engi-
neering. Traditional simulators often encounter computational challenges, requiring
trade-offs between simulation speed, accuracy, and the complexity of the modeled
physical systems. Recent advances in machine learning and deep learning have paved
the way for the use of neural networks in simulation contexts. These neural simulators
can learn the dynamics of physical systems directly from data. Typically trained to
predict the system’s next state from its current state, neural simulators run into issues
when used autoregressively during inference. This is because they rely on their own
predictions as inputs, leading to error accumulation and distribution shifts. This, in
turn, affects their accuracy and stability over extended rollouts. In this thesis we
evaluate existing approaches to address error accumulation and distribution shifts in
inference. Additionally, we introduce a novel framework, which incorporates a buffer
into the training loop, drawing inspiration from replay buffers in reinforcement learning.
The proposed approach gives researchers more control over the training process and
achieves comparable accuracy in long-horizon rollouts with existing methods.

vii

Table of Contents

Zusammenfassung v

Abstract vii

1 Introduction 1

2 Fundamentals 5
2.1 Graphs . 5
2.2 Mesh-Based Finite Element Method 7
2.3 Message Passing Neural Networks . 8
2.4 Graph Network-based Simulators . 9

3 Related Work 11
3.1 Training Noise . 11
3.2 Pushforward Trick . 12
3.3 Multi-Step Training . 13

4 Buffer-Enhanced Training 15
4.1 Intuition . 15
4.2 Overview . 16
4.3 Buffer Implementation . 17

5 Datasets 19
5.1 2D Deformable Plate . 19
5.2 3D Tissue Manipulation . 20

6 Evaluation 21
6.1 Experimental Setup . 21

6.1.1 Simulator . 21
6.1.2 Training . 22

ix

x Table of Contents

6.1.3 Evaluation Metrics . 23
6.1.4 Training Techniques . 23

6.2 Results . 26
6.2.1 2D Deformable Plate . 26
6.2.2 3D Tissue Manipulation . 29

7 Conclusion and Future Work 33
7.1 Conclusion . 33
7.2 Future Work . 34

Bibliography 35

Chapter 1

Introduction

Physical simulations play an important role in many engineering disciplines. They
are employed for tasks as varied as analyzing the structural integrity of buildings
and bridges under stress [29], optimizing the aerodynamic design of vehicles [1] and
simulating vehicle crashes to improve safety [2]. Simulations also play a pivotal role in
scientific fields. Meteorologists use them to refine weather forecasts and climate models
[25], while astrophysicists simulate the formation of galaxies and stars to unravel the
mysteries of the cosmos [11]. Even at the atomic scale, material scientists leverage
simulations to design advanced materials and study their fundamental properties
[20].

Traditional physical simulations, despite their value, often encounter computational
limitations that restrict their scope and accuracy. Explicit numerical solvers, a common
approach in these simulations, require small simulation time steps for stability [28].
This constraint results in extended computation times. Simulating large-scale, complex
systems with high precision can easily become computationally expensive, demanding
extensive resources and time. Additionally, intricate phenomena with many interacting
components or non-linear behaviors can strain the capabilities of traditional simulators.
Consequently, traditional simulators often face trade-offs between simulation speed,
accuracy, and the complexity of the system they aim to model.

Recent advances in deep learning have opened doors for novel approaches to physical
simulations. Neural simulators, a new paradigm, leverage the expressiveness of neural
networks to address the limitations of traditional methods. By learning patterns from
data, these models can capture complex system dynamics without the need for explicit,
hand-crafted numerical solvers. Neural networks also offer inherent advantages for

1

2 Chapter 1 - Introduction

Figure 1.1: Visual comparison of ground truth (green) deformable object mesh with a
mesh simulated by an autoregressive neural simulator trained in a one-step
fashion (orange). Snapshots progress from left to right across increasing
time steps.

parallelization, leading to potential speedups when utilizing specialized hardware.
[14] Hardware accelerators like Graphics Processing Units (GPUs) are specifically
designed for efficient parallel processing, making them ideal for accelerating these
simulations. This parallel processing capability significantly reduces overall simulation
time compared to traditional Central Processing Unit (CPU)-based approaches. While
still an active research area, neural simulators hold promise for faster, more scalable,
and potentially accurate simulations, particularly in domains where traditional methods
struggle. However, as with any emerging advancement, there are challenges that need
to be addressed.

One particularly significant challenge in neural simulators is ensuring their stability over
long rollouts in inference. A common training approach for such simulators involves
one-step prediction, where the model predicts the system’s state at the subsequent
time step based on its current state. The model’s prediction is then compared against
the ground truth for optimization. However, during inference, the model relies on
its own previous output as input in an autoregressive manner. This can lead to
error accumulation, as the model’s subsequent predictions are based on its potentially
imperfect estimates from previous steps. Small errors or deviations at each step
can compound over a long rollout, leading to unreliable predictions. This issue is
further amplified by distribution shift, where the simulator might encounter states
outside of its training data distribution, potentially leading to unpredictable behavior.
This compounding effect is evident in Figure 1.1, where the divergence between the
predicted state and ground truth increases over time While this is a common challenge
for autoregressive models in general, addressing this issue is especially crucial in the
context of autoregressive neural simulators. In simulations, accuracy is required not
only in the final outcome but also throughout the entire predicted trajectory to reflect
the evolution of the system over time as accurately as possible.

Given these challenges, this thesis aims to address the stability issues during rollouts in
neural simulators and bridge the gap between training and inference. In our experiments
we use the Graph-Network-based Simulators (GNS) framework [23] adapted to mesh-

3

based simulation setting, similar to MeshGraphNet (MGN) without adaptive mesh-
refinement [21]. In that regard, in Chapter 2 we first briefly convey the fundamentals
necessary to understand the underlying model we use in our work. Chapter 3 concisely
reviews existing techniques to mitigate error propagation and distribution shift, which
we have implemented and evaluated.

The core contribution of this thesis, presented in Chapter 4, is a novel buffer-enhanced
training technique. It aims to enhance researcher flexibility and potentially improve
the performance of neural simulators. Chapter 5 introduces the datasets employed
to evaluate and compare the existing approaches with our buffer-enhanced training
method. Chapter 6 presents experimental results across diverse settings. While
the ability to directly outperform established baselines is important, our primary
goal with these evaluations is to demonstrate that buffer-enhanced training provides
researchers with greater adaptability and flexibility. It allows for the fine-tuning of the
training process through readily adjustable hyperparameters. Finally, in Chapter 7,
we summarize the key findings of this work and outline promising directions for future
research in this domain.

Chapter 2

Fundamentals

2.1 Graphs

A graph,denoted as G = (V, E), is a mathematical construct comprising:

• Node (Vertex) Set (V): A finite set of nodes (vertices) .

• Edge Set (E): A set of two-element subsets of V, representing connections
between nodes. An edge (u, v) ∈ E indicates an edge between nodes u and v.

Nodes can be considered as an abstraction for a set of objects and edges encode the
relations between these objects.

Additional Concepts and Notation

The neighborhood of a node v, denoted as N (v), is the set of nodes directly connected
to v by an edge

N (v) = {u ∈ V|(u, v) ∈ E}.

The degree of a node v, denoted as deg(v) or |N (v)|, is the number of edges incident
to v. There is also a distinction between directed and undirected graphs. In directed
graphs, edges have an associated direction, and (u, v) is distinct from (v, u). In
undirected graphs, edges are bidirectional, and (u, v) is equivalent to (v, u) and hence

5

6 Chapter 2 - Fundamentals

edges can be represented as u, v. Throughout the thesis we will be meaning directed
graphs when we refer to a graph.

We can represent the graph
x1

x2 x3

in two different ways:

• Adjacency Matrix: A square matrix where the element at row i and column j
indicates the presence or weight of an edge between nodes i and j.0 1 1

0 0 1
0 1 0



• Adjacency Lists: An array of lists, where each list corresponds to a node and
holds its neighbors.

[[x2, x3], [x3], [x2]]

Examples

Social Network: Nodes represent individuals; edges represent friendships. An
example visualization can be seen in Figure 2.1.

Figure 2.1: Graph representation of a social network. Source: Social Net-
works. Brilliant.org. Retrieved 21:20, March 28, 2024, from
https://brilliant.org/wiki/social-networks/

Knowledge Graph: Nodes represent concepts or entities; edges represent various
types of relationships ,e.g., "is-a". Figure 2.2 visualizes a knowledge graph.

Section 2.2 - Mesh-Based Finite Element Method 7

is

is

is

isis

eat

Living
Things

Plants

HerbsCowsDogs

Animals

Figure 2.2: An example knowledge graph by Jayarathina Madharasan un-
der Creative Commons Attribution-Share Alike 4.0 International li-
cense. https://commons.wikimedia.org/wiki/File:Conceptual_Diagram_-
_Example.svg

2.2 Mesh-Based Finite Element Method

Finite Element Method (FEM) is a powerful computational tool for approximating
solutions to engineering and physics problems characterized by complex geometries
and heterogeneous material properties.[22] While many physical phenomena are fun-
damentally described by Partial Differential Equations (PDEs), obtaining analytical
solutions for real-world problems is often intractable due to complexities in geometry
and boundary conditions. Moreover, representing a continuous object with its inherent
infinite degrees of freedom makes direct numerical solution impractical.

Figure 2.3: A simple mesh modelled as a graph

To address these challenges, the FEM discretizes the problem domain into a finite
number of elements, referred to as a mesh. Within each element, the governing PDEs
are approximated, allowing for numerical solutions. Subsequently, these element-wise
solutions are interpolated to approximate the behavior across the entire continuous
domain. A mesh can be modelled as a graph as it can be seen in Figure 2.3.

8 Chapter 2 - Fundamentals

2.3 Message Passing Neural Networks

Graph Neural Networks (GNNs) are a neural networks designed to operate directly
on graph data. Graphs provide a versatile structure to model relationships between
entities making GNNs applicable to domains where data contains rich relational
structure. Researchers have proposed a diverse range of GNNs architectures to
address challenges in graph-based machine learning, including Message Passing Neural
Networks (MPNNs) [10] as a unifying framework for various architectures. MPNNs
offer a powerful framework for learning representations of nodes, edges, or entire graphs.
Since the models employed in this work fall within the MPNNs, this section provides
an introductory overview of the message passing paradigm within the GNN context.

Let a graph be denoted as G = (V, E), where V is the set of nodes and E is the set
of edges. In addition to the formal graph definition, each node v ∈ V and each edge
(v, u) ∈ E has an associated feature vector hv and evu. We also introduce a global
node xg with the corresponding feature vector hg to encode global information. We
include node and edge features to formalize MPNNs. In the context of MPNNs, edge
features are often overlooked during introduction because MPNNs, by design, allow to
utilize edge features when necessary, but we explicitly include them in our notation
because they hold significance in the context of simulators.

MPNNs perform computations in iterative steps. In each step, the following operations
are performed.

Message Passing: For each edge (v, u) from node v to node u ∈ N (v) a message
mvu is computed, defined as an edge update rule.

et+1
vu = Mt(h

t
v,h

t
u, e

t
vu,h

t
g).

Mt denotes the message function, which updates the edges, at iteration t ≥ 1. It is
often a learned differentiable function, such as a neural network.

Aggregation: Each node aggregates messages in its neighborhood to compute an
aggregated message

mt
v =

⊕
u∈N (v)

et+1
vu .

The symbol
⊕

denotes a permutation invariant aggregation function. Permutation
invariance ensures that the result is independent of the order, in which neighborhood
elements are processed, as the neighborhood of a node is inherently an unordered
set.

Update: Node features are updated by combining the aggregated message mt
v,the

node’s current features ht
v and the features of the global node ht

g

ht+1
v = Ut(h

t
v,m

t
v,h

t
g).

Section 2.4 - Graph Network-based Simulators 9

Global features are updated via

ht+1
g = Gt(

⊕
v∈V

ht+1
v ,

⊕
(v,u)∈E

et+1
vu , htg)

Ut denotes the node update function and Gt denotes the global node update function
at iteration t ≥ 1. They are mostly learned differentiable functions, such as a neural
networks. Unlike the way the term "number of layers" is used in deep neural networks,
in an MPNN, the "number of layers" refers to the number of message passing steps.
The choice of message functions, aggregation functions, and update functions provides
significant flexibility [13, 27]. This allows MPNN architectures to capture complex
relationships and dependencies within graph data. MPNNs’ focus on local message
passing naturally emphasizes learning relationships between nearby nodes, making
them well-suited for physical simulations where interactions are often governed by
proximity [5, 23, 21].

2.4 Graph Network-based Simulators

The term GNS [23] refers to a framework proposed by Sanchez-Gonzalez et. al. In this
framework, the state of a system governed by physical laws is represented by a set of
particles. Each particle essentially functions as a point of computation, encoding the
physical properties of a local domain. This collection of particles and their interactions
can be modeled as a graph, with particles serving as nodes and their interactions
represented by edges. The system’s evolution over time is simulated through message
passing along the graph’s edges, facilitating information exchange and subsequent
state updates for the particles. While the framework proposed by Sanchez-Gonzalez
et al. focuses on particle-based simulation, its core principles and model architecture
can be adapted for mesh-based simulations as well. [21]

Model Architecture

The GNS framework proposes a parameterized autoregressive simulator sθ. Given
the state of the system in the time step t, the simulator predicts the state of the
system in the next time step t+1, by predicting dynamics of the system leveraging an
"Encode-Process-Decode" scheme as depicted in Figure 2.4(a).

Let X be the world space and Xt ∈ X the state of the system at time step t. The
prediction of the model is

X̃t+1 = sθ(X
t).

Encoder: The encoder takes the system state as a set of particles, denoted as Xt0 , as
input and constructs a latent graph, denoted as G0. This latent graph encodes the

10 Chapter 2 - Fundamentals

Figure 2.4

relationships and interactions between the particles. The directed edges are created
with respect to the spatial proximity of its’ source and target nodes. Node and edge
embeddings are learnable functions, e.g. neural networks.

Processor: The processing stage iterates M times. In each iteration i ∈ {1, ...,M}, a
Graph Network (GN) block [4] is used to perform message passing over the current
latent graph, Gi−1, to generate an updated latent graph, Gi. Message passing allows
particles to exchange information and update their representations based on the
information received from their neighbors in the graph.

Decoder: After M rounds of processing, the decoder takes the final latent graph, Gm

and extracts the dynamics information from the refined representation of the system’s
state, denoted as Y . As the decoder is learned, it causes the decoded representation
Y to capture useful information regarding dynamics of the system, which is inferred
from the interactions between the particles throughout the processing stages.

Chapter 3

Related Work

Stability over long rollouts is a critical objective for neural simulators to accurately
simulate real-world phenomena. The autoregressive nature of neural simulators,
coupled with the potential for distribution shift during inference as a result of error
accumulation, can severely compromise prediction accuracy over long rollouts. To
mitigate these issues, researchers have proposed some approaches. In this chapter, we
focus on existing methods for improving simulator stability, such as introducing noise
during training and leveraging the pushforward trick.

3.1 Training Noise

Figure 3.1: A simple visualization of the training with noise introduced

11

12 Chapter 3 - Related Work

A potential drawback of training a neural simulator solely on ground truth data in a
one-step prediction fashion is that the model is not exposed to the noisy inputs it will
inevitably encounter during inference. This is due to its autoregressive nature, where
it must rely on its own imperfect outputs as subsequent inputs. To address this and
improve the stability, one approach is to introduce noise into the training data. The
rationale behind this strategy is simple: by exposing the model to noisy data during
training, the goal is to improve its ability to handle the imperfect predictions it will
generate during inference. See Figure 3.1 for a simplified visualization of this training
process.

The concept of introducing noise into training data is broad, and naturally raises
questions about the structure of the noise and how it should be applied within
the training process. For example, GNS introduced in Section 2.4 and MGN, an
extension of GNS to mesh-based representation, [21] utilize a straightforward approach.
They draw independent samples from a gaussian distribution of zero mean and fixed
variance, using these samples to perturb the dynamics-related features of the input
state. An important consideration when perturbing data with Gaussian noise is the
implicit assumption that the model-induced noise in the output also follows a Gaussian
distribution. This is a simplifying assumption, and it’s likely that the true noise
characteristics generated by the model during inference may be more complex.

Throughout this work, when referring to the perturbation of training data with noise,
we specifically mean drawing samples from a Gaussian distribution with zero mean
and fixed variance. These samples are then used to perturb the input state, consistent
with the approach employed in GNS and MGN frameworks.

3.2 Pushforward Trick

The pushforward trick is a training strategy introduced by Brandstetter et al. [7], and
serves as one of the baseline methods against which we compare our buffer-enhanced
approach. Rather than training the model to predict the next system state based on
ground truth or intentionally noisy data (as described in Section 3.1) the pushforward
trick unrolls the simulator for 2 time steps. However, crucially, error is backpropagated
only through the final time step and not through the first one. See Figure 3.2 for an
illustration of training with pushforward trick.

Essentially, the pushforward trick represents an alternative approach to introducing
noise during the training of neural simulators. Compared to directly perturbing
training data with Gaussian noise before feeding it to the model, the pushforward trick
avoids making an implicit assumption that the model-induced noise follows a Gaussian
distribution. Instead, by leveraging the simulator itself to generate perturbations, this
approach aims to capture the true noise characteristics produced by the model during
inference more accurately.

Section 3.3 - Multi-Step Training 13

Figure 3.2: An illustration of three different training strategies taken from Brandstetter
et. al. [7] One-step training predicts the subsequent state based on ground
truth data and backpropagates through the one time step. Unrolled training
predicts N time steps into the future and backpropagates through all of the
time steps. Pushforward training uses the model’s one-step prediction as
the input for another one-step prediction but backpropagates only through
the last time step.

3.3 Multi-Step Training

SimulatorGround
Truth Prediction

Ground
Truth

M
SE

de
ta
ch Simulator Prediction

Ground
Truth

M
SE

Figure 3.3: Visualization of the Multi-Step Training

Multi-step training offers an alternative to the conventional one-step training approach
[26]. This method involves utilizing a hyperparameter s, which determines the number
of time steps for unrolling the simulator starting from a given state. for each one-
step prediction, we compare the predicted outcome with the ground truth. This
comparison is followed by a backward pass to calculate and accumulate gradients.
After this process, the prediction is detached from the computation graph. This cycle
of prediction, comparison, backward pass, and detachment is repeated for each step
until the simulator has been unrolled for s designated time steps. This means before
updating the model weights, we accumulate gradients for more than one step. In
Figure 3.3, a visualization is presented to illustrate the multi-step training approach
that serves as one of our baselines.

Chapter 4

Buffer-Enhanced Training

In this chapter, we present our approach as a more general alternative to training
strategies for neural simulators.

4.1 Intuition

While our approach draws inspiration from the concept of replay buffers in Reinforce-
ment Learning (RL), it’s important to note that we don’t strictly "replay" training
data in the traditional sense. A more accurate interpretation of our buffer-enhanced
training is as a combination of multi-step and one-step training approaches.

Replay buffers are fixed-size data structures primarily designed to store past experiences
encountered by off-policy RL agents. This enables the reuse of collected experiences,
enhancing sample efficiency [18]. An experience typically include state observation,
action taken (in RL), subsequent state, and corresponding reward. Replay buffers
optimize data usage and enable multiple updates from a single transition by storing
and reusing past experiences. Random sampling from the buffer is also crucial for
the stability and convergence of many learning algorithms as it breaks the temporal
correlation of sequentially generated data [17, 19].

We acknowledge that replay-buffer-like concepts are less established in supervised
learning compared to their widespread use RL for several reasons. In supervised
learning setting, data is usually static and stored in datasets for training. In contrast,
in RL, data is dynamically gathered during interactions with the environment and

15

16 Chapter 4 - Buffer-Enhanced Training

Figure 4.1: An overview of the replay-buffer-enhanced training

temporarily stored in a replay buffer. These buffers are dynamic structures that
store transitions or trajectories experienced by an RL agent, enabling more efficient
learning from past interactions. In contrast, supervised learning methods do not involve
the same dynamic data collection process that necessitates the use of replay buffers.
However, we hypothesized that introducing a buffer to the training of autoregressive
neural simulators could offer researchers greater flexibility and control over the training
procedure, drawing inspiration from the use of replay buffers in RL. The existing
literature on replay buffers also provides a rich foundation for exploring techniques to
optimize a training procedure with a buffer in loop.

4.2 Overview

Figure 4.1 outlines our buffer-enhanced training approach. The dataset comprises pairs
of ground truth system states (st, st+1). A sampling procedure determines whether
pairs of data are drawn from the ground truth dataset or from the replay buffer. If
the buffer is empty or lacks sufficient samples for a batch, sampling occurs directly
from the ground truth dataset.

Section 4.3 - Buffer Implementation 17

After a pair or batch of data is sampled, it’s fed into the model, which generates a
prediction for the system’s state at the next time step. The loss between this prediction
and the corresponding ground truth data is then calculated. The simulator’s prediction
for time step t+1 is stored within the buffer. To track how many time steps into
the future we predict based on a single ground truth sample, we keep track of how
many times a data fed into the model and placed within the buffer. We refer to
this hyperparameter as maximum number of forward passes. This tracking
enables us to potentially limit the number of future time steps the model predicts from
a given sample. You can see the step by step description of the training procedure in
Algorithm 1.

Algorithm 1 Buffer-enhanced Training
Require: Dataset, Sampling procedure, Buffer size b, maximum number of forward

passes k starting from a ground truth state, simulator sθ
1: B ← Initialize buffer with size b
2: if isEmpty(B) or length(B) < batch_size then
3: (st, st+1, 0)← sampleFromDataset()
4: else
5: (st, st+1, i)← sampleWithSamplingProcedure()
6: end if
7: s̃t+1 ← sθ(st)
8: loss ← MSE(s̃t+1, st+1)
9: Optimize model parameters θ for loss using gradient descent

10: i← i+ 1
11: if i ≤ k then
12: Store s̃t+1 in buffer B
13: end if

4.3 Buffer Implementation

Our buffer-enhanced training approach fundamentally integrates a buffer into the
training loop. This aligns training with inference by exposing the simulator to ground
truth data perturbed by model-induced noise. The buffer is, therefore, a crucial
component of our implementation. However, developing a performant and flexible
replay buffer from scratch can be complex. To address this, we used the efficient and
highly customizable replay buffer implementation provided by the TorchRL library [6],
eliminating the need to reinvent existing solutions. The replay buffer implementation
from TorchRL offers us the necessary flexibility to integrate custom writers and
samplers. This customization is essential for our use case, as we primarily work with
data structures from PyTorch Geometric [9]. These structures are less conventional
within typical RL settings, requiring tailored processing to effectively utilize them
within the replay buffer.

Chapter 5

Datasets

5.1 2D Deformable Plate

To train, test, and evaluate our models with various training techniques, we use the
2D Deformable Plate dataset. This dataset contains 945 trajectories of a round object
(collider) falling onto a square-shaped object and causing deformation. Each trajectory
is divided into 51 discrete time steps, with each data point representing the object’s
mesh and collider at that specific moment. Each data point is represented as a graph
with 138 nodes and 756 edges. The Simulation Open Framework Architecture (SOFA)
framework [8] was used to generate these trajectories, providing the ground truth
simulation data. You can see figure 5.1 for an example of a data point from the
dataset.

We allocate 70 % of the trajectories for training data, 15% for test data, and the
remaining 15% for validation data. Since the dataset is 2D, the loading and computation
time is relatively small, allowing for quick debugging. However, it still provides sufficient
insight into the effectiveness of different training techniques when compared to each
other.

The dataset includes deformation trajectories for objects made of three different
materials with varying Poisson ratios, a fundamental material property [15]. This
diversity introduces multimodality into the dataset, as the Poisson ratio greatly affects
how a material deforms. In our experiments, we include the normalized Poisson ratio
as a node feature in the graph representation of the mesh.

19

20 Chapter 5 - Datasets

Figure 5.1: Visualization of a data point from 2D Deformable Plate dataset

5.2 3D Tissue Manipulation

We also use the 3D Tissue Manipulation dataset to benchmark different training
techniques. This dataset has 840 trajectories showing a 3D object (tissue) being
manipulated by a pulling force (see figure 5.2). Same as the 2D Deformable Plate
dataset, the SOFA framework [8] was used to generate these trajectories, providing the
ground truth simulation data. Each trajectory has 104 discrete time steps. Each data
point is a graph with 362 nodes and 2204 edges. Similar to the 2D Deformable Plate
dataset, it includes trajectories with diverse Poisson ratios to introduce multimodality.
Normalized Poisson ratio is included in features of all mesh nodes. We maintain a
consistent 70:15:15 split for training, testing, and validation data, respectively.

Figure 5.2: An example data point from 3D Tissue Manipulation dataset

Chapter 6

Evaluation

In this chapter, we evaluate various training techniques for neural simulators and
compare them with our buffer-enhanced training approach. We first present our
experimental setup and then discuss results from our experiments.

6.1 Experimental Setup

6.1.1 Simulator

While the primary focus of this thesis is to compare various training techniques for
neural simulators, it is important to consider the architecture and hyperparameters of
the underlying simulator for the sake of reproducibility and transparency.

We use the Encode-Process-Decode architecture presented in section 2.4 as the archi-
tecture of our underlying simulator across all experiments.

Encoder: We use an encoder, which embeds node features, edge features, and global
features, each individually into a 128-dimensional latent space. We use a single-layer
Multi Layer Perceptron (MLP) with LeakyReLU activation function for each feature
type.

Processor: We use a MPNN with 5 layers as described in section 2.3, which means
we perform 5 message passing steps. We use a separate single-layer MLP with

21

22 Chapter 6 - Evaluation

Component Hyperparameter Value

Encoder
Latent Dimension 128
Architecture Single-layer MLP
Activation LeakyReLU

Processor

Architecture MPNN with 5 Layers
Activation LeakyReLU
Update Functions Separate Single-Layer MLPs
Aggregation Mean
Normalization LayerNorm
Residual Connections Yes

Decoder Decoding Module Single-Layer MLP
Decoding Module Activation ReLU
Readout Module Single-Layer MLP
Readout Module Activation None

Training

Batch Size 32
Optimizer Adam
Learning Rate 5e-4
Epochs 1000

Table 6.1: Overview of Hyperparameters and Architectures used in Experiments

LeakyRELU activation function as update function of each latent feature type (node,
edge, global) at each message passing step. After each message passing step we apply
layer normalization (LayerNorm) [3] to output features. We utilize mean to aggregate
edge features for the node update and to aggregate node and edge features for the
global feature update. In addition, residual connections between message passing
blocks are employed against over-smoothing [16]

Decoder: The decoder comprises two modules: a single-layer MLP with a Rectified
Linear Unit (ReLU) activation function, which extracts dynamics-related information
from the last latent graph’s node features, and a single linear layer without any
activation function, functioning as a readout module to predict velocities of each
node.

6.1.2 Training

We employ a batch size of 32 and the Adam optimizer [12] with a learning rate of 5e-4
throughout all our experiments, training the simulator for 1000 epochs. However, due
to computational constraints and time limitations on the clusters used for training,
some experiments with the 3D Tissue Manipulation dataset (section 5.2) run for fewer
than 1000 epochs.

Section 6.1 - Experimental Setup 23

You can see the summary of the hyperparameters and architectures in the section 6.1.

6.1.3 Evaluation Metrics

Before presenting the results, it is important to mention the evaluation metrics we use
to measure rollout stability and how we refer to them.

Full Rollout Last Mean Squared Error (MSE) refers to the mean squared error
between the last state of a rollout predicted by the simulator autoregressively and the
actual ground truth state.

Full Rollout Mean MSE refers to the average mean squared error between the
predicted states by the simulator and the ground truth state throughout the whole
trajectory.

1-Step Mean MSE refers to the average mean squared error between the ground
truth state at t+ 1 and predicted state by the simulator, given the ground truth state
at time step t.

6.1.4 Training Techniques

Figure 6.1: Evaluation of Rollout Stability of Simulators Trained with Different Noise
variances

24 Chapter 6 - Evaluation

Training with Gaussian Noise

We discussed training with Gaussian noise in section 3.1, and we won’t discuss it
further. However, one question remains unanswered: what value should we choose
for the fixed variance of the Gaussian distribution from which we draw samples? To
address this question, we conducted experiments with different values for the standard
deviation of the Gaussian noise added to the position of the mesh nodes. You can see
the Full Rollout Last MSE results for the experiments with different noise variances in
Figure 6.1. As the figure shows, σ = 0.001 seems to be the best performing σ value
for the training with Gaussian noise and hence we will be using σ = 0.001 for the
experiments in Section 6.2.

Buffer-Enhanced Training

We use two different sampling strategies in our buffer-enhanced training approach,
as described in Chapter 4. One strategy is sampling from the buffer with a fixed
probability, the other one is sampling from the buffer with a gradually increasing
probability as the epoch number progresses. We refer to the former as Training with
Buffer - Constant SP and the latter as Training with Buffer - Increasing SP.

Figure 6.2: Evaluation of various sampling probabilities for Training with Buffer -
Constant SP

In our experiments aimed at determining an optimal sampling probability value for
the Training with Buffer - Constant SP method, we found that adjusting the sampling
probability did not lead to substantial changes in the performance measured by Full

Section 6.1 - Experimental Setup 25

Rollout Last MSE as you can see in the Figure 6.2. Therefore, we concluded that a
value of p = 0.75 is a reasonable choice to assess our approach.

For the Training with Buffer - Increasing SP method, we conducted experiments
involving various hyperparameters, including the "maximum number of forward passes",
"buffer sizes" ,"initial sampling probabilities" and "maximum sampling probabilites".
We observed that modifying these hyperparameters did not yield significant alterations
in the Full Rollout Last MSE metric. Consequently, we decided to set the maximum
number of forward passes to 7, the buffer size to 1000, the initial sampling probability
to 0.25, and the maximum sampling probability to 0.75 for the experiments detailed
in Section 6.2.

Multi-Step Training

Figure 6.3: Evaluation of simulators trained in multi-step fashion with various hyper-
parameter values as described in Section 3.3

There is a single hyperparameter, s, that must be established for multi-step training
as detailed in Section 3.3. This hyperparameter s specifies the number of time steps
for unrolling the simulator from an initial state. Shi et al. suggest that " s = 2 is
sufficient for achieving accuracy during inference-time prediction".[26] We test this
assertion in our experiments, as depicted in Figure 6.3 . Our findings also indicate that
multi-step training with a rollout length exceeding 2 does not significantly improve
the performance of rollout stability, as measured by Full Rollout Last MSE. However,
given that our buffer-enhanced approach can accommodate states predicted up to 7
time steps into the future, we choose s = 7 as the value for the hyperparameter s,
which dictates the number of time steps for unrolling the simulator from a given state,
in our multi-step training for the sake of evenness.

26 Chapter 6 - Evaluation

6.2 Results

In this section, we share the results from our experiments on the 2D Deformable Plate
and 3D Tissue Manipulation datasets. Since it’s easier to get high accuracy on the 2D
Deformable Plate than on the 3D Tissue Manipulation, we start with results from the
2D Deformable Plate dataset. In all experiments, we keep the simulator architecture
and the number of epochs the same but vary the training method. We use 8 different
seeds for eacch training method.

For training methods that involve complex data usage, like Training with Buffer,
deciding on the number of batches per epoch is not straightforward. The batch size is
32 for all experiments, but the batches’ temporal dimension varies with the training
method. To make sure all experiments are comparable, we adjust the number of
batches per epoch based on the training method. This way, we use the same number
of backward passes in all experiments.

6.2.1 2D Deformable Plate

The learning curves presented in Figure 6.5 illustrate the training loss and evaluation
metrics for experiments utilizing various training methods. The Full Rollout Last MSE
and Full Rollout Mean MSE plots indicate that all methods significantly outperform
the basic 1-step training approach without noise, which is represented by the blue
color in the plots. Unexpectedly, Training with Gaussian Noise demonstrates the
most effective performance in terms of rollout stability, as assessed by the Full Rollout
Last MSE and Full Rollout Mean MSE metrics, despite its straightforward approach.
We suggest that the success of Training with Gaussian Noise as the top-performing
training method may be due to the simpler nature of the 2D Deformable Plate task.

Another observation from Figure 6.5 is the discrepancy between the training loss and
the 1-Step Mean MSE loss in Training with Pushforward Trick. This discrepancy
might indicate that the simulator overfits on 1-step predictions, which, however, does
not appear to impact the rollout stability as measured by Full Rollout Last MSE
and Full Rollout Mean MSE. To understand why Training with Pushforward Trick
shows this specific training behavior, further research is required. We can additionally
observe that, there isn’t any significant performance difference between Training with
Buffer - Increasing SP and Training with Buffer - Constant SP. Also, the slower
convergence of the training loss in Multi-Step Training is expected, as the training
task is more complex due to the aim of minimizing the mean squared error over several
steps. Figure 6.4 shows some example trajectories predicted by simulators trained
with different training methods. It is easy to observe, that the naive training is really
unstable and Training with Gaussian Noise and Training with Buffer - Constant SP
yield similar good qualitative results.

Section 6.2 - Results 27

Naive Training

Training with Gaussian Noise

Training with Buffer - Constant SP

Figure 6.4: Example qualitative results from our experiments on 2D Deformable Plate
dataset with different training methods. The transparent green meshes
denote the ground truth, while the orange meshes illustrate predictions
made by the simulator when trained with the respective methods. The
temporal progression is displayed from left to right, starting with the initial
state at time step t = 0, followed by an intermediate state at t = 25, and
concluding with the final state at t = 51.

28 Chapter 6 - Evaluation

Figure 6.5: Training and evaluation loss curves of simulators trained with various
training techniques on the 2D Deformable Plate Dataset

Section 6.2 - Results 29

6.2.2 3D Tissue Manipulation

The 3D Tissue Manipulation dataset poses a greater challenge compared to the
2D Deformable Plate dataset due to its higher dimensional data and the increased
complexity of system dynamics in 3D space versus 2D space. This higher level of
difficulty is evident from the larger absolute MSE values observed in the Full Rollout
Mean MSE plot for the 3D Tissue Manipulation task, as illustrated in Figure 6.7.

As in the 2D Deformable Plate dataset, all training methods also significantly outper-
form the basic 1-step training approach without noise on 3D Tissue Manipulation,
represented by the blue color in the plots in Figure 6.7, in terms of rollout stability
measured by Full Rollout Last MSE and Full Rollout Mean MSE metrics. Unlike in
the 2D setting, Training with Gaussian Noise does not emerge as the best performing
training method in the 3D setting. This supports our hypothesis that the success of
Training with Gaussian Noise as the top-performing method on the 2D Deformable
Plate dataset may be attributed to the simpler nature of the task. We also do not
observe any overfitting pattern from the Training with Pushforward Trick as in the
2D setting.

Multi-Step Training and Training with Buffer - Constant SP appear to yield the
best results, with Training with Buffer - Constant SP achieving faster convergence
due to its simpler objective compared to Multi-Step Training. Both methods exhibit
similar performance in terms of Full Rollout Last/Mean MSE on both datasets, as
depicted in Figure 6.5 and Figure 6.7. There is no significant performance difference
between Training with Buffer - Constant SP and Training with Buffer - Increasing
SP; however, Training with Buffer - Constant SP marginally surpasses Training with
Buffer - Increasing SP on both datasets.

30 Chapter 6 - Evaluation

Naive Training

Training with Gaussian Noise

Training with Buffer - Constant SP

Figure 6.6: Example qualitative results from our experiments on 3D Tissue Manipula-
tion dataset with different training methods. The transparent green meshes
denote the ground truth, while the orange meshes illustrate predictions
made by the simulator when trained with the respective methods. The
temporal progression is displayed from left to right, starting with the initial
state at time step t = 0, followed by an intermediate state at t = 25, and
concluding with the final state at t = 51.

Section 6.2 - Results 31

Figure 6.7: Training and evaluation loss curves of simulators trained with various
training techniques on the 3D Tissue Manipulation Dataset

Chapter 7

Conclusion and Future Work

In this chapter, we provide a summary of the key insights obtained from the experiments
we conducted and outline valuable directions for future research

7.1 Conclusion

In this thesis, we addressed the challenge of ensuring long-horizon rollout stability
in autoregressive neural simulators, focusing on GNS. This challenge arises from the
discrepancy between how simulators are trained, typically in a one-step manner, and
how they are employed during inference, where they are used autoregressively to
predict trajectories. Error accumulation and distribution shift during autoregressive
inference causes simulator to fail in long-horizon predictions.

To address this issue, we explored several strategies in our work, concentrating on
three main approaches: the introduction of Gaussian noise to the training data, the
pushforward trick, and multi-step training. Both Gaussian noise and the pushforward
trick introduce noise into the training process, although they differ in the nature of the
noise introduced. Specifically, one method involves adding Gaussian noise directly to
the training data, while the other incorporates noise that is induced by the model itself.
We investigate these training methods by conducting comparative experiments.

Additionally, we present a novel training framework utilizing a buffer in the training
loop, inspired by the use of replay buffers in RL. We call this framework "buffer-
enhanced training". Buffer-enhanced training introduces a buffer into the training,

33

34 Chapter 7 - Conclusion and Future Work

which stores predictions of the simulator to be used as additional training data. We
compare the buffer-enhanced training to other training methods as well. We conclude,
that when the dataset does not particularly pose a challenge and relatively easy to
learn, such as deformation of a material in 2D space, introducing Gaussian noise into
the training data is a good choice and more advanced methods do not provide any
additional advantages. In more challenging tasks, such as predicting how a tissue will
behave in 3D space when being manipulated by a force, the choice of training method
matters more. Our buffer-enhanced training methods perform better than Gaussian
noise and Pushforward Trick on average and on-par with multi-step training. We also
believe that, adding a buffer to the training loop can offer researchers greater flexibility
and control over the training procedure and existing literature on replay buffers can
provide a rich foundation for exploring techniques to optimize a training procedure
with a buffer in loop.

7.2 Future Work

Moving forward, there’s a lot more work to be done based on what we’ve learned so
far. Below, we outline several promising directions for future research.

While we aim to compare various training methods, we believe our experiments
are not extensive enough to definitively conclude which method is superior overall.
Therefore, we suggest that a more thorough comparison across a broader range
of tasks is required to determine the most effective training approach for specific
scenarios. Furthermore, the development of more robust evaluation metrics and
benchmarks specifically designed for assessing long-horizon stability in autoregressive
neural simulators could significantly aid in the progress of this field. Current metrics
like MSE offer a broad measure of performance but may not capture all aspects
relevant to stability or practical applicability. Developing more nuanced metrics or
comprehensive benchmark challenges could help to better quantify improvements
and guide future research efforts. Additionally, existing research on the long-horizon
stability of autoregressive neural simulators is largely empirical. We believe that future
studies should aim to ground this issue in a more solid theoretical framework.

Moreover, our buffer-enhanced training method has potential for further improvement
through the adoption of more sophisticated sampling processes or buffer configurations.
For example, prioritized experience replay [24], a concept borrowed from RL, where
more ’important’ experiences are sampled more frequently, could be adapted and
evaluated for its efficacy in training neural simulators. This concept raises the question
of how ’importance’ could be defined and measured within the context of autoregressive
neural simulators and whether such an approach could lead to faster convergence or
better long-term stability.

Bibliography

[1] A. Al-Saadi, K. Al-Farhany, A. E. Faisal, M. A. Alomari, W. Jamshed, M. R. Eid,
E. S. M. Tag El Din, and A. Amjad. Improvement of the aerodynamic behaviour
of the passenger car by using a combine of ditch and base bleed. Scientific
Reports, 12(1), Nov. 2022. ISSN 2045-2322. doi: 10.1038/s41598-022-23183-z.
URL http://dx.doi.org/10.1038/s41598-022-23183-z.

[2] and Karlton J. Hickey and S. T. Xiao. Finite element modeling and simulation
of car crash. 2017. URL https://api.semanticscholar.org/CorpusID:
55542348.

[3] L. J. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016. URL http://arxiv.org/abs/1607.06450.

[4] P. Battaglia, J. B. C. Hamrick, V. Bapst, A. Sanchez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, C. Gulcehre, F. Song, A. Ballard,
J. Gilmer, G. E. Dahl, A. Vaswani, K. Allen, C. Nash, V. J. Langston, C. Dyer,
N. Heess, D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu.
Relational inductive biases, deep learning, and graph networks. arXiv, 2018. URL
https://arxiv.org/pdf/1806.01261.pdf.

[5] P. W. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, and K. Kavukcuoglu.
Interaction networks for learning about objects, relations and physics. In D. D.
Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett, editors, Advances
in Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain,
pages 4502–4510, 2016. URL https://proceedings.neurips.cc/paper/
2016/hash/3147da8ab4a0437c15ef51a5cc7f2dc4-Abstract.html.

35

http://dx.doi.org/10.1038/s41598-022-23183-z
https://api.semanticscholar.org/CorpusID:55542348
https://api.semanticscholar.org/CorpusID:55542348
http://arxiv.org/abs/1607.06450
https://arxiv.org/pdf/1806.01261.pdf
https://proceedings.neurips.cc/paper/2016/hash/3147da8ab4a0437c15ef51a5cc7f2dc4-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/3147da8ab4a0437c15ef51a5cc7f2dc4-Abstract.html

36 Bibliography

[6] A. Bou, M. Bettini, S. Dittert, V. Kumar, S. Sodhani, X. Yang, G. D. Fabritiis,
and V. Moens. Torchrl: A data-driven decision-making library for pytorch.
CoRR, abs/2306.00577, 2023. doi: 10.48550/ARXIV.2306.00577. URL https:
//doi.org/10.48550/arXiv.2306.00577.

[7] J. Brandstetter, D. E. Worrall, and M. Welling. Message passing neural PDE
solvers. In The Tenth International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=vSix3HPYKSU.

[8] F. Faure, C. Duriez, H. Delingette, J. Allard, B. Gilles, S. Marchesseau,
H. Talbot, H. Courtecuisse, G. Bousquet, I. Peterlik, and S. Cotin. SOFA:
A Multi-Model Framework for Interactive Physical Simulation. In Y. Payan,
editor, Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, vol-
ume 11 of Studies in Mechanobiology, Tissue Engineering and Biomaterials,
pages 283–321. Springer, June 2012. doi: 10.1007/8415_2012_125. URL
https://inria.hal.science/hal-00681539.

[9] M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch
Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds, 2019.

[10] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural
message passing for quantum chemistry. In D. Precup and Y. W. Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings
of Machine Learning Research, pages 1263–1272. PMLR, 2017. URL http:
//proceedings.mlr.press/v70/gilmer17a.html.

[11] R. Kannan, F. Marinacci, M. Vogelsberger, L. V. Sales, P. Torrey, V. Springel,
and L. Hernquist. Simulating the interstellar medium of galaxies with radiative
transfer, non-equilibrium thermochemistry, and dust. Monthly Notices of the Royal
Astronomical Society, 499(4):5732–5748, 10 2020. ISSN 0035-8711. doi: 10.1093/
mnras/staa3249. URL https://doi.org/10.1093/mnras/staa3249.

[12] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In
Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

[13] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenRe-
view.net, 2017. URL https://openreview.net/forum?id=SJU4ayYgl.

https://doi.org/10.48550/arXiv.2306.00577
https://doi.org/10.48550/arXiv.2306.00577
https://openreview.net/forum?id=vSix3HPYKSU
https://inria.hal.science/hal-00681539
http://proceedings.mlr.press/v70/gilmer17a.html
http://proceedings.mlr.press/v70/gilmer17a.html
https://doi.org/10.1093/mnras/staa3249
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl

Bibliography 37

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In P. L. Bartlett, F. C. N.
Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 25: 26th Annual Confer-
ence on Neural Information Processing Systems 2012. Proceedings of a meet-
ing held December 3-6, 2012, Lake Tahoe, Nevada, United States, pages
1106–1114, 2012. URL https://proceedings.neurips.cc/paper/2012/
hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

[15] R. Lakes and K. W. Wojciechowski. Negative compressibility, negative poisson’s
ratio, and stability. physica status solidi (b), 245(3):545–551, 2008. doi: https:
//doi.org/10.1002/pssb.200777708. URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/pssb.200777708.

[16] G. Li, M. Müller, A. K. Thabet, and B. Ghanem. Deepgcns: Can gcns go as
deep as cnns? In 2019 IEEE/CVF International Conference on Computer Vision,
ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pages 9266–
9275. IEEE, 2019. doi: 10.1109/ICCV.2019.00936. URL https://doi.org/
10.1109/ICCV.2019.00936.

[17] L.-J. Lin. Reinforcement learning for robots using neural networks. PhD thesis,
USA, 1992. UMI Order No. GAX93-22750.

[18] L. J. Lin. Self-improving reactive agents based on reinforcement learning, planning
and teaching. Mach. Learn., 8:293–321, 1992. doi: 10.1007/BF00992699. URL
https://doi.org/10.1007/BF00992699.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013. URL http://arxiv.org/abs/1312.5602.

[20] A. R. Oganov, C. J. Pickard, Q. Zhu, and R. J. Needs. Structure prediction drives
materials discovery. Nature Reviews Materials, 4(5):331–348, Apr. 2019. ISSN
2058-8437. doi: 10.1038/s41578-019-0101-8. URL http://dx.doi.org/10.
1038/s41578-019-0101-8.

[21] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. W. Battaglia. Learning mesh-
based simulation with graph networks. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021. URL https://openreview.net/forum?id=roNqYL0_XP.

[22] J. N. Reddy. An introduction to the finite element method. McGraw Hill Higher
Education, Maidenhead, England, 3 edition, May 2005.

[23] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. W.
Battaglia. Learning to simulate complex physics with graph networks. In Pro-

https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.200777708
https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.200777708
https://doi.org/10.1109/ICCV.2019.00936
https://doi.org/10.1109/ICCV.2019.00936
https://doi.org/10.1007/BF00992699
http://arxiv.org/abs/1312.5602
http://dx.doi.org/10.1038/s41578-019-0101-8
http://dx.doi.org/10.1038/s41578-019-0101-8
https://openreview.net/forum?id=roNqYL0_XP

38 Bibliography

ceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pages 8459–8468. PMLR, 2020. URL http://proceedings.mlr.
press/v119/sanchez-gonzalez20a.html.

[24] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay.
In Y. Bengio and Y. LeCun, editors, 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016. URL http://arxiv.org/abs/1511.05952.

[25] K. Sharma and P. Korn. Numerical Simulation of an idealized coupled Ocean-
Atmosphere Climate Model, page 113–130. Springer Nature Switzerland, 2023.
ISBN 9783031451584. doi: 10.1007/978-3-031-45158-4_7. URL http://dx.
doi.org/10.1007/978-3-031-45158-4_7.

[26] H. Shi, H. Xu, S. Clarke, Y. Li, and J. Wu. Robocook: Long-horizon elasto-
plastic object manipulation with diverse tools. In J. Tan, M. Toussaint, and
K. Darvish, editors, Conference on Robot Learning, CoRL 2023, 6-9 Novem-
ber 2023, Atlanta, GA, USA, volume 229 of Proceedings of Machine Learning
Research, pages 642–660. PMLR, 2023. URL https://proceedings.mlr.
press/v229/shi23a.html.

[27] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Ben-
gio. Graph attention networks. In 6th International Conference on Learn-
ing Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL https:
//openreview.net/forum?id=rJXMpikCZ.

[28] Z. Zheng-hua, W. Yu-huan, L. Quan, Y. Xiao-tao, and Y. Cheng. A varying
time-step explicit numerical integration algorithm for solving motion equation.
Acta Seismologica Sinica, 18:239–244, 2005. doi: 10.1007/S11589-005-0071-3.

[29] O. C. Zienkiewicz and R. L. Taylor. The finite element method for solid and
structural mechanics. Butterworth-Heinemann, Woburn, MA, 6 edition, May
2014.

http://proceedings.mlr.press/v119/sanchez-gonzalez20a.html
http://proceedings.mlr.press/v119/sanchez-gonzalez20a.html
http://arxiv.org/abs/1511.05952
http://dx.doi.org/10.1007/978-3-031-45158-4_7
http://dx.doi.org/10.1007/978-3-031-45158-4_7
https://proceedings.mlr.press/v229/shi23a.html
https://proceedings.mlr.press/v229/shi23a.html
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ

Acronyms

CPU Central Processing Unit. 2

FEM Finite Element Method. 7

GN Graph Network. 10

GNN Graph Neural Network. 8

GNS Graph-Network-based Simulators. 2, 9, 12, 33

GPU Graphics Processing Unit. 2

MGN MeshGraphNet. 3, 12

MLP Multi Layer Perceptron. 21, 22

MPNN Message Passing Neural Network. 8, 9, 21

MSE Mean Squared Error. 23, 29, 34

PDE Partial Differential Equation. 7

ReLU Rectified Linear Unit. 22

RL Reinforcement Learning. 15–17, 33, 34

39

40 Acronyms

SOFA Simulation Open Framework Architecture. 19, 20

	Zusammenfassung
	Abstract
	Introduction
	Fundamentals
	Graphs
	Mesh-Based Finite Element Method
	Message Passing Neural Networks
	Graph Network-based Simulators

	Related Work
	Training Noise
	Pushforward Trick
	Multi-Step Training

	Buffer-Enhanced Training
	Intuition
	Overview
	Buffer Implementation

	Datasets
	2D Deformable Plate
	3D Tissue Manipulation

	Evaluation
	Experimental Setup
	Simulator
	Training
	Evaluation Metrics
	Training Techniques

	Results
	2D Deformable Plate
	3D Tissue Manipulation

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

